

NARROWING THE PROTEIN DEFICIT GAP IN CRITICALLY ILL PATIENTS USING A VERY HIGH PROTEIN ENTERAL FORMULA

AUTHORS: Michele ApSimon MSc, RD¹; Carrie Johnston MSc, RD¹; Barb Winder RD¹; Sarah S. Cohen PhD, MS²; Bethany Hopkins RD, MEd³ ¹Hamilton Health Sciences, Hamilton, ON; ²EpidStrategies, Cary, NC; ³Nestlé Health Science Canada

BACKGROUND & OBJECTIVES

Protein deficits in critically ill patients have been associated with longer ICU stays¹ and increased mortality² in patients at nutrition risk. Current clinical view suggests that if protein goals are met, meeting full energy targets may be less important^{3,4}. Use of an isocaloric, higher protein enteral nutrition (EN) formula may provide patients with adequate protein, without overfeeding energy in the first week of critical illness.

Objective

Assess the protein and energy intake of critically ill patients before and after availability of a very high protein (VHP) EN formula in a mixed medical-surgical-trauma ICU located in Hamilton General Hospital, Hamilton Health Sciences in Hamilton, ON, Canada.

METHODS

- Retrospective study of mechanically ventilated medicalsurgical ICU patients receiving exclusive EN for a minimum of 5 days during the first week of ICU admission.
- 20 subjects received standard EN (prior to availability of the VHP formula)
- 20 subjects received the VHP EN formula (Peptamen[®] Intense 1.0 HP)
- Exclusion criteria included acute renal failure not dialyzed, hepatic encephalopathy grade 3 or 4, use of parenteral nutrition, or intentional underfeeding in the first week of ICU admission.

DATA COLLECTED

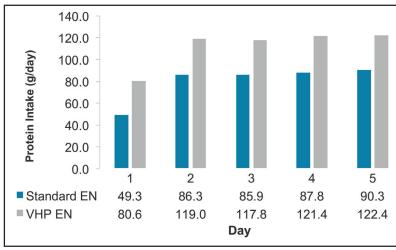
- Demographics age, gender, APACHE II score, admission diagnoses
- Protein and energy prescriptions
- Daily protein and energy intake
- Gastrointestinal tolerance
- Feeding interruptions

RESULTS

Table 1: Characteristics of Study Population

Variable	Standard EN (n=20)	VHP EN (n=20)	P Value
Gender, Male	15 (75%)	16 (80%)	>0.99
Age (y)	53.3 ± 16.6	56.8 ± 12.4	0.46
APACHE II Score	21.4 ± 4.3	18.8 ± 7.1	0.17
BMI (kg/m²)	31.4 ± 6.5	43.0 ± 13.9	0.004

Table 2: Nutrition Prescribed and Delivered over First 5 Study Days


Variable	Standard EN (n=20)	VHP EN (n=20)	P Value	
Nutrition Prescribed				
Protein (g/d)	111.4 ± 25	135.5 ± 22.2	0.0030	
Energy (kcal/d)	1893.7 ± 340.9	1695.7 ± 401.8	0.46	
Nutrition Delivered				
Total protein intake	81.7 ± 16.7	112.2 ± 27.8	0.0002	
from EN, including				
modular protein (g/d)				
Modular protein	21.6 ± 3.4	0.0	0.0352	
contribution (g/d)				
Total energy intake	1506.0 ± 380	1520.3 ± 345	0.9014	
from EN, including				
lipid-based				
medication (kcal/d)				
Energy Intake from EN	1379.2 ± 300	1294.8 ± 266	0.3529	
(kcal/d)				
Energy Intake from	126.9 ± 173.3	225.5 ± 234	0.1382	
lipid-based				
medication (kcal/d)				
Protein intake from EN	1.1 ± 0.24	1.46 ± 0.35	0.0006	
by weight (g/kg)b				
Energy intake from EN	19.0 ± 4.3	17.1 ± 4.3	0.1757	
by weight (kcal/kg)				

a Values are mean ± standard deviation

RESULTS

- There were no significant differences between groups in baseline characteristics of gender, age, and APACHE II scores
- Total protein prescribed was significantly higher in the VHP group versus the standard EN group.
- Total protein received for the first five days of exclusive EN was significantly higher in the VHP group versus the standard EN group.
- Total energy prescribed and received was not significantly different between groups.
- There were no significant differences between groups in lipid based medication use, EN tolerance or feeding interruptions.

Figure 1: Daily Protein Intake from EN (g/d)

CONCLUSION

EN feeding with a VHP formula in ICU patients resulted in higher protein intakes without increasing energy intake or use of modular protein in the first week of critical illness.

REFERENCES

1. Yeh D et al. *JPEN* 2018; 42(2): 212-218. **2. Nicolo M** et al. *JPEN* 2016; 40 (1):45-51. **3. Hurt R** et al. *NCP* 2017; 32(1S):142S- 151S. **4. Singer P** et al. *Clin Nutr* 2018, https://doi.org/10.1016/j.clnu.2018.08.037

b An ideal body weight (BMI, Body mass index 25 kg/m2) was used to determine protein needs and delivery for patients with BMI ≥ 30. Actual body weight used for patients with BMI < 30.