

Evolving practice in nutrition for patients with neurological disease: the role of the gut-brain axis

Anton Emmanuel *April 2019*

National Hospital for Neurology & Neurosurgery

The human gut

More bacterial cells than human cells

More neurones than the spinal cord

Neuro-gastroenterology

Update on understanding of brain-gut axis

- current understanding of physiology

Types of gut dysfunction

- understanding pathophysiology to target treatment

Microbiome involvement in control of gut function

Water fluxes through the intestine

	Water influx
Food and drink	2.0
Saliva	1.5
Gastric juice	2.5
Bile	1.5
Pancreatic juice	2.5
Total	10.0 I

Chang and Rao. In: Johnson LR, eds. Physiology of the digestive tract. New York: Raven Press;1994;2027–2081.

Colonic 5-HT receptors

Motility: Healthy vs. constipated motor activity¹

Relationship of synchronising defaecatory effort with colonic mass movements

Dinning et al Gastroenterology 2004;127(1):49-56

Scintigraphic study showing defaecation produces a complete emptying of the left colon in healthy subjects, but not in SCI

Before

After

Spinal injury

Rasmussen MM et al. Spinal Cord 2013; 51: 683-7

Pathophysiology

Reflex bowel:

Loss of sensation of fullness Rectal pressure **high** Anal sphincter **high pressure** opens as a reflex when the rectum is full Predisposes to inappropriate emptying

Flaccid bowel:

Loss of sensation of fullness Rectal pressure **low** Anal sphincter at **low pressure** Predisposes to bowel soiling

Involvement goes beyond the bowel

IDENTIFY GI SYMPTOMS

Prevalence of neurogenic bowel symptoms

% patients with dysfunction

Bowel dysfunction ruins quality of life **UCL**

Spinal Cord Injury

Multiple Sclerosis

Limitation	Impact (0-6)	Limitation	Impact (0-6)		
Mobility	4.8	Bowel	4.4		
Bowel	4.3	Bladder	3.9		
Sexual	3.5	Sexual	3.5		
Bladder	3.4	Mobility	3.1		
Sensation	2.7	Sensation	3.1		
Glickman & Kamm, Lancet 1998		Preziosi et al, DDW 2011			

Hospitalisations twice as frequent in SCI patients with bowel symptoms

Sonnenberg et al, Am J Gastro 2004

The bi-directional brain-gut axis

Incidence Ψ disorders in FGIDs

Use of tricyclics in FGIDs

Brain

Psychological Factors

- Psychiatric comorbidity (anxiety, depression)
- Cognitive-affective processes
- Health anxiety and somatization
- GI-specific anxiety
- Hypervigilence/attentional bias
- Catastrophizing

CNS Structure and Function

- Structural brain abnormalities
- Functional network connectivity
- Emotional and cognitive modulation of visceral afferent signals
- **Classical fear conditioning**

Brain-Gut Axis Autonomic Nervous System HPA Axis

Gut physiology

- Gut permeability
- Motility
- Sensation
- Altered bacterial flora
- Inflammation/ immune dysfunction

Overlap of neurotransmitters in brain & gut

> Stress exacerbation of FGIDs

Gastric Emptying and Blood Sugar

Hyperglycaemia delays gastric emptying

Samsom et al, Gut 1997

Abnormal neural networks in diabetes

Russo et al, J Clin Endocrin & Metab 2005

Serotonin: gut derived, brain active Abuse and <u>chronic</u> stress

Maestripieri et al Prog Neurophysiol 2011

Effect of <u>acute</u> stress on bowel function

Symptoms and Histology

O'Malley et al Gastroenterol 2010

Stress causes pain through an adrenergic mechanism Rat model of stress (Winston et al 2010)

Putting it together

Evidence of microbiome-gut-brain axis: antibiotics

	≥1 Additional Symp	otoms	≥2 Additional Symptoms			
	OR (95% CI)	p	OR (95% CI)	p		
Antibiotic use	3.29 (1.25-8.62)	0.02	6.18 (1.3-29.41)	0.02		
Female gender	1.31 (0.43-3.93)	0.63	0.27 (0.06-1.22)	0.09		
Age (per yr)	1.03 (0.97-1.09)	0.28	0.97 (0.90-1.05)	0.50		
GP visits group	0.93 (0.47-1.85)	0.83	2.34 (0.86-6.37)	0.10		
Anxiety score (per unit)	1.00 (0.87-1.15)	0.97	1.06 (0.88-1.28)	0.55		
Depression score (per unit)	1.01 (0.82-1.24)	0.92	0.88 (0.63-1.23)	0.45		
Hypochondriasis score (per unit)	1.12 (0.83-1.53)	0.46	1.04 (0.68-1.59)	0.87		
Disease phobia score (per unit)	0.91 (0.68-1.23)	0.55	0.96 (0.66-1.38)	0.81		
Bodily preoccupation score (per unit)	1.06 (0.80-1.41)	0.69	1.24 (0.82-1.85)	0.30		

Effect of antibiotics on FGID symptoms

Maxwell et al Am J Gastro 2002

GP = general practitioner; OR = odds ratio.

Effect of antibiotics on behaviour (mouse)

Collins & Bercik Gastroenterol 2009

Evidence of microbiome-gut-brain axis: early life

O'Mahony et al Neuroscience 2014

Evidence of microbiome-gut-brain axis: germ-free model

Sudo et al J Physiol 2004

UCL

Evidence of microbiome-gut-brain axis: probiotic effect

Desbonnet et al J Psych Res 2008

Modifying the cholinergic stress anti-inflammatory pathway

Bai et al Scan J Immunol 2007

Putting it together: a hypothetic model

Diet modifies this cortical effect

Li et al Physiol Behav 2009

Strongest gene associations in schizophrenia are immune Depression typified by biomarkers moderated by microbiome (stress, limbic system)

Schizophrenia characterised by neuroinflammatory and peripheral immune activation

Depression induces microbiome changes

Bowel Dysfunction in MS

60-70% of MS patients 25% regular incontinence

Neurological:

- Cortical involvement (frontal lobe)
- Hypothalamic autonomic dysfunction
- Spinal Cord
- Conus Medullaris

Non-Neurological:

- Polypharmacy
- Reduced mobility
- Coeliac
- Others (cancer, IBD, IBS, preexisting condition)

Constipation in Parkinson's Disease Pathophysiology

- 1. Slow transit due to disturbed parasympathetic tone
 - Commonest cause
 - Constipation predates treatment
- 2. Rectal outlet dysfunction: rare
 - Dyssynergic anal sph. contraction on attempted voiding
 - Probably related to loss of rectal sensation
- 3. Medication related: probably not dominant factor
 - No dose-relationship with gut transit
 - Drugs may potentiate prior constipation

Parkinson's Disease

The Braak Hypothesis and Bowel Function

Vagal innervation of gut from oesophagus to colon

⇒ ascending path of neurodegeneration

Dorsal motor nucleus of vagus as "departure point" of the disease

Parkinson's Disease

The Braak Hypothesis and Bowel Function

Aggregated axonal α -synuclein inclusions in the colonic Meissner plexus

Schematic diagram showing the interconnections between the enteric nervous system and brain.

Human gut microbiota from PD patients induce enhanced motor dysfunction in mice

Gut microbes promote a-synuclein-mediated motor deficits and brain pathology

Depletion of gut bacteria reduces microglia activation

SCFAs modulate microglia and enhance PD pathophysiology

Sampson et al Cell 2017

Volatile organic compounds in healthy controls (red) and Parkinson's Disease (green)

De Pablo Fernandez, current data

Gastroparesis

Definition: impaired gastric emptying 2⁰ autonomic failure, occurs >70% people living with PD (Tanaka et, al, 2011; Marrinan et al, 2014; Heetun et al, 2012)

Symptoms: abdominal distention; bloating; N&V; early satiety

Consequences:

Delays L-dopa in transit to the ileum for absorption (Müller et al, 2006) Reduced oral intake and lead to unintentional weight loss Dehydration

Electrolyte imbalance

Gastroparesis is associated with impaired quality of life

Nutritional management (Gastroparesis) ^AUCL

Outcome is to focus on maintaining or improving nutritional status

Aims:

Reduce symptoms, such as nausea, vomiting, diarrhoea, early satiety, bloating and pain

Correct fluid, electrolyte and nutrition deficiencies

Improve glycaemic control if diabetic

Optimimise protein absorption

Protein absorption

UCL

MUSCLE SYNTHESIS

Dietary strategies

Gastroparesis

4-6 meals per day (PPH)

Low in fat and fibre (PPH)

Modify the texture of foods. Chew very well or pureé.

Offer meal replacement liquids e.g. ready-to-drink or powdered ONS

Varying the form of foods throughout the day (PPH)

Limit ETOH (PPH)

Enteral feeding – polymeric;2kcal/ml

Post-prandial hypotension

500mls H20 on waking (Grobety et al, 2015)

Low CHO meals

Increase salt/salty foods

Reduce caffeine

Usually only shot-style ONS tolerated

Overnight gastrostomy feeding (Young & Mathias, 2006)

Criteria for initiation of enteral supplementation

Severe weight loss, e.g. unintentional weight loss >5–10% of usual BWT over 3–6 months

Repeated hospitalisations for refractory gastroparesis requiring i.v. hydration and/or i.v. medication

Inability to meet weight goals set by dietician and patient

Patient would benefit from gastric venting

Route to absorb medication

Patient has maintained usual BWT, but experiences significant clinical manifestations

Cyclic nausea and vomiting

Overall poor QOL due to gastroparesis symptoms

Multi-strain probiotics in Parkinson's Disease

Randomised double-blind, n=120, 4 weeks Fermented milk with prebiotic fibre and probiotic

Endpoint	Experimental Group (n = 80)	Placebo Group (n = 40)	P Value
Three or more CBMs in week 3 - 4 (%)	58.8	37.5	.03
Mean increase in stool consistency*	0.7	0.1	.018
Mean decrease in use of laxatives, week 3 - 4	0.8	0.1	.018
Satisfied/very satisfied (%)	55.0	17.5	<.001
Likely to continue treatment (%)	56.3	30.0	.008
*Stool consistency, Bristol Stool Form Scale score.			

Multi-strain probiotics in Multiple Sclerosis

Randomised double-blind, n=60, 12 weeks

	Placebo group (n = 30)	Probiotic group (n = 30)	Pb	
EDSS	0.05 ± 0.1	-0.4 ± 0.1	0.003	
BDI total scores	-1.3 ± 0.8	-5.5 ± 0.8	<0.001	
GHQ scores	-3.2 ± 1.1	-8.5 ± 1.1	0.002	Improve
DASS scores	-7.6 ± 2.2	-15.0 ± 2.2	0.02	
hs-CRP (µg/mL)	0.2 ± 0.4	-1.1 ± 0.4	0.02	
NO (µmol/L)	-7.2 ± 0.8	2.1 ± 0.8	<0.001	Improve
TAC (mmol/L)	23.7 ± 21.9	21.2 ± 21.9	0.93	improve
GSH (µmol/L)	45.3 ± 14.2	-9.0 ± 14.2	0.01	
MDA (µmol/L)	0.3 ± 0.1	-0.006 ± 0.1	0.003	
FPG (mg/dL)	2.5 ± 0.9	2.0 ± 0.9	0.70	Change
Insulin (µIU/mL)	1.4 ± 0.7	-2.9 ± 0.7	<0.001	change.
HOMA-IR	0.2 ± 0.2	-0.6 ± 0.2	<0.001	
HOMA-B	3.9 ± 2.7	-11.6 ± 2.7	<0.001	
QUICKI	-0.005 ± 0.003	0.01 ± 0.003	<0.001	Change
Triglycerides (mg/dL)	3.0 ± 4.8	-5.5 ± 4.8	0.21	0.00
VLDL-cholesterol (mg/dL)	0.6 ± 1.0	-1.1 ± 1.0	0.21	
Total cholesterol (mg/dL)	7.9 ± 3.3	6.2 ± 3.3	0.71	
LDL-cholesterol (mg/dL)	6.4 ± 3.0	4.6 ± 3.0	0.66	
HDL-cholesterol (mg/dL)	1.1 ± 0.5	2.6 ± 0.5	0.06	
Total-/HDL-cholesterol	0.08 ± 0.05	-0.09 ± 0.05	0.03	

Improved neurological symptoms

Improved mood

Changes in inflammatory markers

Changes in insulin resistance

Microbiome and multiple sclerosis

Jangi et al Nature 2016

UCL

Faecal microbial transplant transfers behavioural traits

Bercik et al Gastroenterol 2011

Neuro-gastroenterology and diet: summary

There is two-way communication between brain and gut

Control is exerted at all levels of gut function - voluntary and involuntary (stress)

Understanding pathophysiology of GI presentations opens therapeutic options

Gut microbes explain some presentations – harder to treat

The future

Posterior tibial nerve stimulation

Improves urgency, consistency...mood

Obstetric anal sphincter injury

Table 3. Measures of Symptom Severity Before and After Treatment in Responders and Nonresponders.

	Responders			Nc	onresponders		C		
	Baseline	After treatment	p	Baseline	After treatment	p	Responders	Nonresponders	p
Wexner score	13 ± 3	4 ± 2	<0.01	13±5	12 ± 5	0.13	-9	-1	<0.01
Visual analogue scores									
Bowel	$63\pm19^*$	36 ± 24	<0.01	$48\pm20^{*}$	39 ± 23	0.10	-26.8	-20.0	0.05
Bladder	49 ± 30	45 ± 30	0.61	62 ± 30	56 ± 30	0.10	-3.6	-11.1	0.71
Rockwood quality of life sc	cores								
Life	3.2 ± 0.6	3.2 ± 0.6	0.70	2.8 ± 0.8	2.8 ± 0.8	0.61	0	0	0.50
Coping and behavior	2.5 ± 0.8	2.5 ± 0.5	1	2.1 ± 0.7	2.1 ± 0.8	0.80	0	0	0.86
Depression and self perception	1.9 ± 1.0	2.9 ± 0.9	<u><0.01</u>	2.4 ± 0.9	2.6 ± 0.8	0.10	+1.0	+0.2	<u>0.03</u>
Embarrassment	2.2 ± 1.1	3.0 ± 0.9	0.04	2.4 ± 1.0	2.5 ± 0.9	0.54	+0.8	+0.1	0.09
Bristol stool form score	5 (1)	3 (2)	<0.01	5 (2)	4 (1.5)	0.08	-2	-1	0.06

Underlined values are statistically significant (P \leq 0.05).

p < 0.01 for responders vs. nonresponders baseline values; higher visual analogue scores correspond to greater severity of symptoms; lower Rockwood scores correspond to greater disability; lower Bristol Stool Form scores correspond to firmer stool consistency; values are means \pm SD, medians (IQR).

Sanagapillai et al Neuromod 2018a

Multiple Sclerosis

Table 1.WexnePTNS.	er Scor	e Change	es ii	n Resp	onders ar	nd I	Nonresp	oonders t	to
	F					Responders		Nonresponders	
N (%)					26 (79%)		7 (21%)		
Baseline Wexner	score	mean +	SD		135 + 38	3	134+	- 39	
Post-therapy We	exner so	core, mea	an ±	SD	7.0 ± 2.8		13.9 ±	13.9 ± 3.1	
Table 2. Measures of Symptom Set	everity Before	and After Treatmer	nt in Re	sponders and	Nonresponders.				
	Responders			Nonrespond	lers		Change in values		
	Baseline	After treatment	Р	Baseline	After treatment	Р	Responders	Nonresponders	Р
Visual analogue scores									
Bowel	58.5 ± 25.4	52.3 ± 24.8	0.28	45.7 ± 22.8	46.4 ± 14.1	0.67	-6.2	+0.9	0.47
Bladder	51.0 ± 26.0	53.1 ± 23.2	0.69	52.9 ± 25.1	50.7 ± 20.1	0.74	+2.1	-2.2	0.91
Rockwood quality of life scores									
Life	2.5 ± 0.9	2.9 ± 0.8	0.11	3.2 ± 0.7	3.1 ± 0.9	0.01	+0.4	-0.1	0.25
Coping and behavior	2.0 ± 0.7	2.4 ± 0.9	0.15	2.6±0.4	2.4 ± 0.8	0.15	+0.4	-0.2	0.20
Depression and self-perception	2.7 ± 0.8*	3.1 ± 0.9	0.01	3.4 ± 0.4*	3.1 ± 0.8	0.18	+0.4	-0.3	0.05
Embarrassment	2.2 ± 0.8	2.6 ± 0.8	0.06	2.5 ± 1.0	2.4 ± 1.0	0.54	+0.4	-0.1	0.21
Bristol stool form score	5 (4–6)	4 (3–4)	0.02	5 (5–5.5)	5 (4.5-5.5)	0.44	-1	0	0.01

Higher visual analogue scores correspond to greater severity of symptoms.

Lower Rockwood scores correspond to greater disability.

Lower Bristol Stool Form scores correspond to firmer stool consistency.

Values are means \pm SD, medians (IQR).

*P < 0.05 for responders vs. nonresponders baseline values.

Sanagapillai et al Neuromod 2018b

Patterns of foot variation It's easier to fit gloves than shoes

1 in 3 have foot asymmetry Feet mirror gluteals

PTNS, symmetry and afferent neuromodulation

n=32 idiopathic faecal incontinence (26 female, mean age 46) All had foot asymmetry Randomly stimulated in hypoplastic or normal side

Work done by Physiology Unit team

Multiple Sclerosis Society

PARKINSON'S^{UK} Change Attitudes. Find a cure. Join US.

Aspire

SUPPORTING Spinal Injured PEOPLE

Work done by Physiology Unit team

